

Impacts of Alternative Fuels on Air Quality

Subcontractor

University of Dayton Research Institute

Principal Investigator

Philip H. Taylor University of Dayton Research Institute 300 College Park Dayton, OH 45469-0132 (513) 229-2846

DOE Project Manager

Michael Gurevich U.S. Department of Energy CE-332, MS6A-116/Forrestal 1000 Independence Avenue, SW Washington, D.C. 20585 (202) 586-6104

NREL Technical Monitor

Brent Bailey/Michelle Bergin NREL 1617 Cole Boulevard Golden, CO 80401 (303) 275-4468

Subcontract Number

XAU-3-12228-02

Performance Period

5/93-5/96

NREL Subcontract Administrator

Scott Montgomery (303) 275-3198

Objectives

- To quantify emissions of trace level organic compounds from the thermal degradation of methanol (MeOH), ethanol (EtOH), compressed natural gas (CNG), and liquefied petroleum gas (LPG)
- To determine the atmospheric reactivity of these alternative fuels as a function of exposure temperature and equivalence ratio
- To correlate emissions with engine dynamometer tests being conducted by Southwest Research Institute.

The UDRI Thermal Decomposition Analytical System (TDAS)

Approach

Experiments are conducted using a high-temperature thermal instrumentation system referred to as the Thermal Decomposition Analytical System (TDAS). Thermal exposures are conducted as a function of residence time, temperature, and equivalence ratio. Organic compounds are separated, detected, and quantified using in-line hyphenated techniques (gas chromatography-mass spectrometry [GC-MS], gas chromatography-flame ionization detection [GC-FID], and gas chromatography-thermal conductivity detection [GC-TCD]).

Accomplishments

Thermal degradation experiments for MeOH, EtOH, CNG, and LPG are complete. MeOH and EtOH produced much lower yields of organic emissions than CNG and LPG. The high-temperature ($750^{\circ}-1050^{\circ}$ C) organic emission yields generally followed this trend: MeOH < EtOH < CNG \approx LPG. With respect to atmospheric reactivity, the following trend was generally observed: MeOH < CNG < EtOH < LPG.

Future Direction

We will extend these experiments to include measurements of reformulated gasoline (RFG) and conventional gasoline. Correlations between our results and those of Southwest Research Institute will be developed.

Publications

Shanbhag, S. 1995. *Combustion Byproducts of Alternative Automotive Fuels*, M.S. thesis, University of Dayton, Dayton, OH.

Shanbag, S.; P.H. Taylor; W.A. Rubey; B. Dellinger. 1995. "Organic Byproducts from the Oxidation and Pyrolysis of Alternative Automotive Fuels," submitted to *Environmental Science and Technology*.

Taylor, P.H., S. Shanbhag, and B. Dellinger. 1994. "The High-Temperature Pyrolysis and Oxidation of Methanol and Ethanol: Experimental Results and Comparison with Vehicle Emission Tests," in *Progress in Emission Control Technologies* (SP-1053), #941904, SAE Technical Paper Series, Warrendale, PA., pp. 39–49.

Taylor, P.H., S. Shanbhag, and B. Dellinger. 1994. "Combustion Products of Alternative Automotive Fuels," in *Extended Abstracts: AIChE Annual Meeting*, AIChE, New York, NY, p. 523.

Taylor, P.H. and B. Dellinger. 1994. *Impacts of Alternative Fuels on Air Quality*, NREL/TP-425-6650, Golden, CO.

Taylor, P.H.; W.A. Rubey; B. Dellinger; S. Shanbhag; M. Rahman. 1995. *The Origin and Fate of Organic Pollutants from the Combustion of Alternative Fuels*, NREL/TP-425-7607. National Renewable Energy Laboratory, Golden, CO. June.